Proof of the symmetry of the off-diagonal heat-kernel and Hadamard’s expansion coefficients in general C∞ Riemannian manifolds

نویسنده

  • Valter Moretti
چکیده

Abstract: We consider the problem of the symmetry of the off-diagonal heat-kernel coefficients as well as the coefficients corresponding to the short-distance-divergent part of the Hadamard expansion in general smooth (analytic or not) manifolds. The requirement of such a symmetry played a central rôle in the theory of the point-splitting one-loop renormalization of the stress tensor in either Riemannian or Lorentzian manifolds. Actually, the symmetry of these coefficients has been assumed as a hypothesis in several papers concerning these issues without an explicit proof. The difficulty of a direct proof is related to the fact that the considered off-diagonal heat-kernel expansion, also in the Riemannian case, in principle, may be not a proper asymptotic expansion. On the other hand, direct computations of the off-diagonal heat-kernel coefficients are impossibly difficult in nontrivial cases and thus no case is known in the literature where the symmetry does not hold. By approximating C metrics with analytic metrics in common (totally normal) geodesically convex neighborhoods, it is rigorously proven that, in general C Riemannian manifolds, any point admits a geodesically convex neighborhood where the off-diagonal heat-kernel coefficients, as well as the relevant Hadamard’s expansion coefficients, are symmetric functions of the two arguments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the symmetry of the off - diagonal Hadamard / Seeley - deWitt ’ s coefficients in C ∞ Lorentzian mani - folds by a “ local Wick rotation ”

Abstract: Completing the results achieved in a previous paper, we prove the symmetry of Hadamard/Seeley-deWitt off-diagonal coefficients in smooth D-dimensional Lorentzian manifolds. To this end, it is shown that, in any Lorentzian manifold, a sort of “local Wick rotation” of the metric can be performed provided the metric is a locally analytic function of the coordinates and the coordinates ar...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

A Riemannian Off-diagonal Heat Kernel Bound for Uniformly Elliptic Operators

We find a Gaussian off-diagonal heat kernel estimate for uniformly elliptic operators with measurable coefficients acting on regions Ω ⊆ R , where the order 2m of the operator satisfies N < 2m. The estimate is expressed using certain Riemannian-type metrics, and a geometrical result is established allowing conversion of the estimate into terms of the usual Riemannian metric on Ω. Work of Barbat...

متن کامل

Computer Algebra Study of Spectral Invariants of Differential Operators on Curved Manifolds

We consider asymptotic heat kernel expansion for elliptic differential operators acting on compact closed curved manifolds. The coefficients in this expansion are quantities of fundamental importance in quantum field theory, quantum gravity, spectral geometry and topology of manifolds. Obtaining explicit expressions for these quantities is very laborious task, especially in the problems of mode...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999